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ABSTRACT 

This study is placed in the framework of Internal Set Theory (Nelson, 1977).   

Real numbers (𝜉𝑖) 𝑖=1,2,… ,𝑘   are called simultaneously approximable in the 

infinitesimal sense, if for every positive infinitesimal 휀, there exist rational 

numbers  (
𝑝𝑖

𝑞
) 𝑖=1,2,…,𝑘  such that 

{
𝜉𝑖 =

𝑝𝑖
𝑞
+ 휀£𝑖  

휀𝑞 ≃ 0
 ;  𝑖 = 1,2, … , 𝑘, 

 

where (£𝑖) 𝑖=1,2,… ,𝑘are limited numbers. Let (𝜉0, 𝜉1, … , 𝜉𝜔) be a system of reals, 

with 𝜔 unlimited.  In this paper, we will give a necessary condition for which 

(𝜉𝑖) 𝑖=0,1,… ,𝜔  are simultaneously approximable in the infinitesimal sense. The 

converse of this condition is also discussed. 

 

Keywords: INTERNAL set theory, simultaneous rational approximation, 

infinitesimal sense. 

 

1. INTRODUCTION 

1.1 Elementary Nonstandard Notions 

 

We recall some definitions and facts from nonstandard analysis, real 

numbers, and sets that will be used in the proof of the main result. For more 

details, see Diener, 1960; 1995, Lutz and Goze , 1981 and Nelson, 1977. 
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(a) A real number 𝑥is called unlimited if its absolute value |𝑥| is larger 

than any standard integer 𝑛. So a nonstandard integer 𝜔 is also an 

unlimited real number. 

(b) A real number 휀is called infinitesimal if its absolute value |휀| is 

smaller than  
1

𝑛
  for any standard 𝑛. 

(c) A real number 𝑟 is called limited if is not unlimited and 

appreciable if it is neither unlimited nor infinitesimal. 

(d) Two real numbers 𝑥and 𝑦are equivalent (written 𝑥 ≃ 𝑦) if their 

difference 𝑥 − 𝑦is infinitesimal. 

(e) We distinguish two types of formulas: Formulas which do not 

contain the symbol "𝑠𝑡"   (for standard) are called internal, and 

formulas which do contain the symbol "𝑠𝑡" are called external. 

(f) We call internal any set defined using an internal formula. 

(g) We call external any subset of an internal set defined using of an 

external formula for which a classical theorem at least is in default. 

 

Examples 1.1. From Diener et Reeb, 1960 in page 52,  we have 

 

1. Let 휀 be a positive real number (infinitesimal or not). The following 

sets are internal. 

[1 − 휀, 1 + 휀],  {𝑥 ∈ ℝ ;  휀𝑥 ≥ 1}, and  {
𝑛

𝜀
 ;  𝑛 ∈ ℕ}. 

 

2. Let 휀 be an infinitesimal positive real number. The set 

 

{𝑥 ∈ ℝ ;  𝑥 + 휀 ≃ 𝑥} 
 

is equal to ℝ. i.e., it is internal. However, the set 

 

                       {𝑥 ∈ ℝ ;  𝑥 ≃ 0}        (1) 

 

is external. In fact, if the set of (1) is internal, then it has the least 

upper bound 𝑎; which is neither infinitesimal nor appreciable (If 𝑎 is 

infinitesimal, 2𝑎 and 3𝑎 are also. If 𝑎 is appreciable, 
𝑎

2
 is also).  

 

That is, the Least Upper Bound Principle "A nonempty set of reals 

which is bounded above has the least upper bound" is in default. 
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3. Let ℕ𝜎 be the set of limited (standard) positive integers, then ℕ𝜎 is 

external. In fact, if it is not we can apply the Principle of 

Mathematical Induction: 

 

 Since 1 is limited, then 1 ∈ ℕ𝜎 . 
 If 𝑠 ∈ ℕ𝜎 ,  then 𝑠 + 1 ∈ ℕ𝜎 . 

 

Therefore ℕ𝜎 = ℕ, which is impossible because there are unlimited 

positive integers. 

 

Lemma 1.2 (Robinson’s Lemma). If (𝑢𝑛) 𝑛≥0 is a sequence such that 𝑢𝑛 ≃ 0 

for all standard 𝑛, there exists an unlimited 𝑁 such that 𝑢𝑛 ≃ 0 for all 𝑛 ≤
𝑁. 

 

Also, in this paper, we need to the following notions (see Cutland, 1983, 

Diener, 1995 and Van den Berg, 1992). 
 

Definition 1.3. Let 𝑋 be a standard set, and let (𝐴𝑥) 𝑥∈𝑋  be an internal family 

of sets. 
 

1. A union of the form 𝐺 = ⋃ 𝐴𝑥𝑠𝑡𝑥∈𝑋  is called a pregalaxy; if it is 

external 𝐺 is called a galaxy. 

2. An intersection of the form 𝐻 = ⋂ 𝐴𝑥𝑠𝑡𝑥∈𝑋  is called a prehalo; if it is 

external 𝐻 is called a halo. 

 

Example 1.4. We have  
 

 

(a) ℕ𝜎  is a galaxy. 

(b) ℎ𝑎𝑙(0) = {𝑥 ∈  ℝ ;  𝑥 ≃ 0} is a halo.    

 

Theorem 1.5.  No halo is a galaxy.  

 

Definition 1.6 (Shadow of a set). The shadow of a set 𝐴, denoted by °𝐴, is the 

unique standard set whose standard elements are precisely those whose halo 

intersects 𝐴. 
 
Theorem 1.7 (Cauchy’s Principle). No external set is internal. 

 

For example, let 𝜔  be an unlimited positive integer. The shadow of 

(
1

𝜔
,
2

𝜔
, … ,

𝜔−1

𝜔
,
𝜔

𝜔
) is equal to [0,1]. Moreover, we see that 𝑒𝑛 < 𝜔 for every 



Bellaouar Djamel & Boudaoud Abdelmadjid 

 

212 Malaysian Journal of Mathematical Sciences 

 

standard positive integer 𝑛 . From Cauchy’s Principle there exists an 

unlimited integer 𝑛0 which satisfies the previous inequality. 

In this work limited numbers are denoted by £ and infinitesimal numbers are 

denoted by 휀 or 𝜙. 
 

1.2 Some Classical Results on the Simultaneous Rational Approximation 

We present some well known results on the simultaneous approximation of 𝑘 

numbers  𝜉1, 𝜉2, … , 𝜉𝑘  by fractions 
𝑝1

𝑞
,
𝑝2

𝑞
, … ,

𝑝𝜔

𝑞
 .  These results were 

announced by Dirichlet’s Theorem (Schmidt, 1980 in page 27)), Kronecker’s 

Theorem (Hardy and Wright, 1960 in page 382), and many others.  
 

Theorem 1.8 (Dirichlet’s Theorem). Let 𝑘 be a positive integer, and let 

𝜉1, 𝜉2, … , 𝜉𝑘 be reals. For any integer 𝑄 > 1, we can find positive integers 

𝑞, 𝑝1, 𝑝2, … , 𝑝𝑘such that 

 

1 ≤ 𝑞 < 𝑄𝑘   and  |𝑞𝜉𝑖 − 𝑝𝑖| ≤
1

𝑄
 ; for 𝑖 = 1,2,… , 𝑘. 

 

Theorem 1.9 (Hardy and Wright, 1960, page 170). If 𝜉1, 𝜉2, … , 𝜉𝑘  are any 

real numbers, then the system of inequalities 

 

|𝜉𝑖 −
𝑝𝑖
𝑞
| <

1

𝑞1+𝜇
, 𝜇 =

1

𝑘
 ; 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑘.  

 

has at least one solution. If one 𝜉𝑖 at least is irrational, then it has an infinity 

of solutions. 
 

Theorem 1.10 (Hardy and Wright, 1960, page 170). Given 𝜉1, 𝜉2, … , 𝜉𝑘 and 

any positive 휀, we can find an integer 𝑞 so that 𝑞𝜉𝑖 differs from an integer, 

for every 𝑖, by less than 휀. 
 

Definition 1.11 (Schmidt, 1962). A set of numbers 𝜉1, 𝜉2, … , 𝜉𝑟  is linearly 

independent if no linear relation: 
 

𝑎1𝜉1 + 𝑎2𝜉2 +  …+ 𝑎𝑟𝜉𝑟 = 0, 
 

with integer coefficients, not all zero, holds between them. 
 

Theorem 1.12 (Kronecker’s Theorem). If 𝜉1, 𝜉2, … , 𝜉𝑘  are linearly 

independent, 𝛼1, 𝛼2, … , 𝛼𝑘 are arbitrary, and 𝑄 and 휀 are positive, then there 

are integers 

𝑞 > 𝑄, 𝑝1, 𝑝2, … , 𝑝𝑘 
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such that |𝑞𝜉𝑖 − 𝑝𝑖 − 𝛼𝑖| < 휀, for 𝑖 = 1,2, … , 𝑘. 
 

1.3 How to give the infinitesimal sense to the simultaneous rational 

approximation? 

Let 𝑘 be a positive integer and let (𝜉1, 𝜉2, … , 𝜉𝑘) be a system of reals. From 

Dirichlet’s Theorem, for any integer 𝑄 > 1,  the reals (𝜉𝑖) 𝑖=1,2,… ,𝑘  are 

simultaneously approximable by the rational numbers (
𝑝𝑖

𝑞
) 𝑖=1,2,… ,𝑘 ,  with an 

error less than 
1

𝑞𝑄
. That is, 

 

𝜉𝑖 =
𝑝𝑖

𝑞
+ 𝑒𝑖 , with |𝑒𝑖| ≤

1

𝑞𝑄
 and 1 ≤ 𝑞 < 𝑄𝑘  ;  𝑖 = 1,2, … , 𝑘. 

 

For every positive infinitesimal 휀, we can choose 𝑄 such that 휀𝑄𝑘 ≃ 0, which 

implies 휀𝑞 ≃ 0. Thus, 
 

{
𝜉𝑖 =

𝑝𝑖

𝑞
+ 휀𝛾𝑖 

휀𝑞 ≃  0
   with    |𝛾𝑖| ≤

1

𝜀𝑞𝑄
 ;  𝑖 = 1,2,… , 𝑘.  

 

But, we have difficulty to prove that 𝛾𝑖  is limited for 𝑖 = 1,2,… , 𝑘. 
Similarly, from Theorem 1.10, for every positive infinitesimal 휀 we have 

 

𝜉𝑖 =
𝑝𝑖

𝑞
+ 휀£𝑖,  with  |£𝑖| ≤

1

𝑞
= £ ;  𝑖 = 1,2,… , 𝑘.   

 

Also, if ξ1, ξ2, … , ξk are linearly independent, we get the same result by using 

Theorem 1.12 whenever 𝛼1 = 𝛼2 = … = 𝛼𝑘 = 0. But we can not have the 

condition  휀𝑞 ≃  0. 
 

The following definition gives a new sense to the simultaneous rational 

approximation of  𝑘 numbers. 
 

Definition 1.13. Let (𝜉1, 𝜉2, … , 𝜉𝑘) be a system of reals, with 𝑘 ≥ 1.  The 

reals (𝜉𝑖) 𝑖=1,2,… ,𝑘  are said to be simultaneously approximable in the 

infinitesimal sense, if for every positive infinitesimal 휀, there exist rational 

numbers (
𝑝𝑖

𝑞
)
 𝑖=1,2,…,𝑘

such that 

 

                       {
𝜉𝑖 =

𝑝𝑖
𝑞
+ 휀£𝑖 

휀𝑞 ≃ 0,
  ;  1 ≤ 𝑖 ≤ 𝑘,        (2) 
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where (£𝑖) 𝑖=1,2,… ,𝑘are limited numbers. 
 

The real 휀  allows to control the error 휀£𝑖  and the denominator  𝑞 . In fact, 

from classical results of the simultaneous approximation, 𝜉𝑖 =
𝑝𝑖

𝑞
+ 𝑒𝑖  for 

𝑖 = 1,2, … , 𝑘.  Then, for every positive infinitesimal 휀,  𝜉𝑖 =
𝑝𝑖

𝑞
+ 휀£𝑖, with 

£𝑖 =
𝑒𝑖

𝜀
. In Definition 1.13, we have added two conditions: £𝑖 is a limited for 

𝑖 = 1,2, … , 𝑘 and 휀𝑞 ≃  0. 
 

Notation 1.14. Let 𝑆𝐴(≃ 0) denote the set of all systems (𝜉1, 𝜉2,…, 𝜉𝑘), with  

𝑘 ≥ 1 for which (𝜉𝑖) 𝑖=1,2,… ,𝑘  satisfy (2). 

     

In this paper, we will prove that 𝑆𝐴(≃ 0)  is a non-empty set. Also, for a 

given system of reals (𝜉0, 𝜉1, … , 𝜉𝜔),   with 𝜔 ≃ +∞  we ask if there is a 

necessary and a sufficient condition on the reals (𝜉𝑖) 𝑖=0,1,… ,𝜔  for which 

(𝜉0, 𝜉1, … , 𝜉𝜔) ∈ 𝑆𝐴(≃ 0).  We are in a position to give our main results. 

   

2. MAIN RESULTS 

To prove that 𝑆𝐴(≃ 0) is a non-empty set, we need the following 

lemma. 

 

Lemma 2.1. Let 𝑁 , 𝜔  be two unlimited positive integers. Let 휀 be an 

infinitesimal positive real number. If 휀𝑁𝜔−1 is not infinitesimal, then there 

exists an integer 𝑖0 ∈ {1, 2,… ,𝜔 − 1}  such that 휀𝑁𝜔−𝑖0 ≄ 0  and 

휀𝑁𝜔−(𝑖0+1) ≃ 0. 

 

Proof. Let α be an appreciable number strictly less than 휀𝑁𝜔−1 which we 

may, because 휀𝑁𝜔−1 ≄ 0. Since 
 

   0 ≃ 휀𝑁𝜔−𝜔 < 휀𝑁 < 휀𝑁2 < ⋯ < 휀𝑁𝜔−2 < 휀𝑁𝜔−1 ≄ 0, 
 
 

there exists an integer 𝑠 ∈ {1, 2, … ,𝜔 − 1} such that 

 

휀𝑁𝜔−(𝑠+1) ≤ 𝛼 < 휀𝑁𝜔−𝑠. 
 

There are two cases to consider. 

 휀𝑁𝜔−(𝑠+1) ≃ 0, Lemma 2.1 is proved by taking 𝑖0 = 𝑠. 
 휀𝑁𝜔−(𝑠+1) ≄ 0. Since 𝑁 ≃ +∞, we have 



Non-classical Study on the Simultaneous Rational Approximation 

 

 Malaysian Journal of Mathematical Sciences 215 

 

휀𝑁𝜔−(𝑠+2) =
휀𝑁𝜔−(𝑠+1)

𝑁
≤
𝛼

𝑁
≃ 0. 

Also, Lemma 2.1 is proved by taking 𝑖0 = 𝑠 + 1.  □                             

Theorem 2.2.  𝑆𝐴(≃ 0) is a non-empty set. 
 

Proof. In the following proposition, we give a system containing an 

unlimited number of reals that satisfies (2). That is, we prove that 𝑆𝐴(≃ 0)  
contains many systems of the form ( 𝜉0,  𝜉1 , … , 𝜉𝑘), with 𝑘 is an unlimited.  .                                                                                                                                                                                                            

□ 
 

Proposition 2.3. Let 𝑁, 𝜔be two unlimited positive integers. Then, 

 

 (
1

𝑁𝜔
,
1

𝑁𝜔−1
, … ,

1

𝑁
, 1) ∈  𝑆𝐴(≃ 0).        (3) 

 

Proof. Let 휀be an infinitesimal positive real number, there are two cases. 

A) 휀𝑁𝜔≃ 0. For every 𝑖 = 0, 1,… , 𝜔, we have 

 

{

1

𝑁𝜔−𝑖
=
𝑁𝑖

𝑁𝜔
+ 휀. 0 =  

𝑝𝑖
𝑞
+ 휀£𝑖

휀𝑁𝜔 = 휀𝑞 ≃ 0.

 

 

In this case, Proposition 2.3 is proved. 
 

B) 휀𝑁𝜔≄ 0. Here we distinguish two cases. 

 

B.1) 휀𝑁𝜔 = 𝑎with 𝑎is an appreciable. In this case, we can write the 

system of (3) as follows: 

(

 
 
 
 
 

1

𝑁𝜔

1

𝑁𝜔−1

1

𝑁𝜔−2
⋮
1 )

 
 
 
 
 

=

(

 
 
 
 
 
 

0

𝑁𝜔−1
+ 휀

1

𝑎
1

𝑁𝜔−1
+ 휀. 0

𝑁

𝑁𝜔−1
+ 휀. 0

⋮
𝑁𝜔−1

𝑁𝜔−1
+ 휀. 0)

 
 
 
 
 
 

=

(

 
 
 
 
 
 

𝑝0
𝑞
+ 휀£0

𝑝1
𝑞
+ 휀£1

𝑝2
𝑞
+ 휀£2

⋮
𝑝𝜔
𝑞
+ 휀£𝜔)

 
 
 
 
 
 

, 
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where 휀𝑞 = 휀𝑁𝜔−1 =
𝜀𝑁𝜔

𝑁
=
𝑎

𝑁
 ≃  0. So, Proposition 2.3 is proved for 

this case. 
 

B.2)  휀𝑁𝜔 ≃ +∞. In this case we also distinguish two cases. 

B.2.1) The real 휀𝑁𝜔−1 is infinitesimal. Since 
1

𝜀𝑁𝜔
≃ 0, it follows that 

 

(

 
 
 
 
 

1

𝑁𝜔

1

𝑁𝜔−1

1

𝑁𝜔−2
⋮
1 )

 
 
 
 
 

=

(

 
 
 
 
 
 

0

𝑁𝜔−1
+ 휀

1

휀𝑁𝜔

1

𝑁𝜔−1
+ 휀. 0

𝑁

𝑁𝜔−1
+ 휀. 0

⋮
𝑁𝜔−1

𝑁𝜔−1
+ 휀. 0 )

 
 
 
 
 
 

=

(

 
 
 
 
 
 

𝑝0
𝑞
+ 휀£0

𝑝1
𝑞
+ 휀£1

𝑝2
𝑞
+ 휀£2

⋮
𝑝𝜔
𝑞
+ 휀£𝜔)

 
 
 
 
 
 

, 

 

where 휀𝑞 = 휀𝑁𝜔−1 ≃ 0. Proposition 2.3 is proved. 
 

B.2.2) The real 휀𝑁𝜔−1 is not infinitesimal. Let 𝑖0 ∈ {1, 2, … ,𝜔 − 1} be 

the integer constructed in Lemma 2.1, then 

(

 
 
 
 
 
 
 
 
 
 
 
 

1

𝑁𝜔

1

𝑁𝜔−1
⋮
1

𝑁𝜔−𝑖0
1

𝑁𝜔−(𝑖0+1)

1

𝑁𝜔−(𝑖0+2)
⋮
1

𝑁
1 )

 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

𝑁𝜔−(𝑖0+1)
+ 휀

1

휀𝑁𝜔

0

𝑁𝜔−(𝑖0+1)
+ 휀

1

휀𝑁𝜔−1

⋮
0

𝑁𝜔−(𝑖0+1)
+ 휀

1

휀𝑁𝜔−𝑖0
1

𝑁𝜔−(𝑖0+1)
+ 휀. 0

𝑁

𝑁𝜔−(𝑖0+1)
+ 휀. 0

⋮
𝑁𝜔−(𝑖0+2)

𝑁𝜔−(𝑖0+1)
+ 휀. 0

𝑁𝜔−(𝑖0+1)

𝑁𝜔−(𝑖0+1)
+ 휀. 0 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑝0
𝑞
+ 휀£0

𝑝1
𝑞
+ 휀£1

⋮
𝑝𝑖0
𝑞
+ 휀£𝑖0

𝑝𝑖0+1

𝑞
+ 휀£𝑖0+1

𝑝𝑖0+2

𝑞
+ 휀£𝑖0+2

⋮
𝑝𝜔−1
𝑞

+ 휀£𝜔−1

𝑝𝜔
𝑞
+ 휀£𝜔 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

with 휀𝑞 = 휀𝑁𝜔−(𝑖0+1) ≃ 0. 
 

This completes the proof of Proposition 2.3.  □                                                
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Lemma 2.4. Let 𝜔 be an unlimited positive integer, and let ( 𝜉0,  𝜉1 , … , 𝜉𝜔) 
be a system of reals satisfying the following properties: 
 

     (a)  𝜉0 ≃  𝜉1 ≃ ⋯ ≃  𝜉𝜔  
     (b)  𝜉𝑖+1 −  𝜉𝑖 =  𝑑𝑖 > 0  for 𝑖 = 0, 1,… ,𝜔 − 1 

     (c)  
𝑑𝑖

 𝑑𝑖−1 
=  𝑎𝑖 ≃ 1  for 𝑖 = 1, 2,… ,𝜔 − 1. 

 

Then, (𝜉0, 𝜉1, … , 𝜉𝜔) ∉  𝑆𝐴(≃ 0).  
 

Proof. Assume, by way of contradiction, that the reals (𝜉𝑖) 𝑖=0,1,… ,𝜔  are 

simultaneously approximable in the infinitesimal sense. In particular, for 

휀 = 𝑑0 ≃ 0 we have 

 

 {
𝜉𝑖 =

𝑝𝑖
𝑞
+ 휀£𝑖 

휀𝑞 ≃ 0,
        (4) 

 

where  
𝑝𝑖

𝑞
 is a rational and £𝑖 is a limited for every 𝑖 = 0,1, … , 𝜔. 

 

Let 𝑖0  be an unlimited positive integer strictly less than 𝜔  and 

satisfying 

 

 𝑖0 <
1

𝑁휀𝑞
 

       (5) 

 

 

for a given limited integer 𝑁 > 2 (which we may, because 
1

𝜀𝑞
=

1

𝑑0𝑞
≃ +∞). 

Since the reals (𝑎𝑖) 𝑖=1,2,… ,𝜔−1 are all appreciable then, for any standard integer 

𝑛 ≥ 1, the number 𝑆𝑛 = ∑ 𝑎1𝑎2…𝑎𝑖
𝑛
𝑖=1  is also an appreciable. 

 

Next, consider the set 

 

            {𝑛 ∈ {1, 2,… ,𝜔 − 1} ;   1 +∑𝑎1𝑎2…𝑎𝑖

𝑛

𝑖=1

< 𝑖0 ≃ +∞},              
       (6) 

 

 

which is internal and contains ℕ𝜎 .  According to the Cauchy’s Principle there 

exists an unlimited integer 𝑛0 that satisfies (6). 
 

On the other hand, since 
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              𝜉𝑛0
− 𝜉0 = 𝑑0 + 𝑑1 +.    . . +𝑑𝑛0−1 = 휀 ∑

𝑑𝑖
𝑑0

𝑛0−1

𝑖=0

 ,            
       (7) 

 

 

and 
𝑑𝑖

𝑑𝑖−1
= 𝑎𝑖 , for 𝑖 = 1, 2,… ,𝜔 − 1. From (4) and (7), we have 

 

𝜉𝑛0 − 𝜉0 = 휀(1 + ∑ 𝑎1𝑎2…𝑎𝑖

𝑛0−1

𝑖=1

)  

  =  
𝑝𝑛0 − 𝑝0 

𝑞
+ 휀£. 

 

                   (8) 

 

We use the fact that 𝑛0 satisfies (6). Then from (5), (6), and (8) we get 

 

(𝑝𝑛0 − 𝑝0 ) +  휀𝑞£ <
1

𝑁
. 

 

 

Since 휀𝑞£ ≃ 0, it follows that  𝑝𝑛0 − 𝑝0 <
2

𝑁
 . 

 

Now we prove that 𝑝𝑛0 > 𝑝0 .  First, it suffices to prove that the 

number 1 + ∑ 𝑎1𝑎2…𝑎𝑖 
𝑛0−1
𝑖=1  is unlimited. In fact, consider the following set  

 

{𝑚 ∈ ℕ ;  𝑚 ≤ 𝑛0 − 1 𝑎𝑛𝑑   1 +∑𝑎1𝑎2…𝑎𝑖

𝑚

𝑖=1

> 𝑚}, 

 

which is internal and contains ℕ𝜎, because for all limited integers 𝑠 we have 

1 +∑𝑎1𝑎2…𝑎𝑖

𝑠

𝑖=1

= 1 + 𝑠 + 𝜙𝑠 > 𝑠, 

 

where 𝜙𝑠 ≃ 0 (positive or negative). From Cauchy’s principle there exists an 

unlimited integer 𝑚0 (with 𝑚0 ≤ 𝑛0 − 1) such that 

 

1 + ∑ 𝑎1𝑎2…𝑎𝑖

𝑛0−1

𝑖=1

≥ 1 +∑𝑎1𝑎2…𝑎𝑖

𝑚0

𝑖=1

> 𝑚0 ≃ +∞. 
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We assume that 𝑝𝑛0 = 𝑝0 , by (8) we get 

 

+∞ ≃ 1 + ∑ 𝑎1𝑎2…𝑎𝑖

𝑛0−1

𝑖=1

= £, 

 

which is a contradiction. Therefore 𝑝𝑛0 ≠ 𝑝0 .  Moreover, if 𝑝𝑛0 < 𝑝0 ,  by 

using (8) again, we obtain 

 

£ >
𝑝0 − 𝑝𝑛0
휀𝑞

≃ +∞, 

because 𝜉𝑛0 > 𝜉0 . Which is a contradiction, since £ is limited. Recall that 

𝑝𝑛0 and 𝑝0  are positive integers, and since 𝑝𝑛0 > 𝑝0  it follows that  
2

𝑁
> 1. 

Which leads to a contradiction with the hypothesis of 𝑁 > 2. This completes 

the proof.  □                                                                                     

 

Theorem 2.5. Let 𝜔 be an unlimited positive integer, and let ( 𝜉0,  𝜉1 , … ,
𝜉𝜔) be a system of reals. If  °( 𝜉0,  𝜉1 , … , 𝜉𝜔) contains a standard interval 

[𝑎, 𝑏]  with 𝑎 < 𝑏 then the reals (𝜉𝑖) 𝑖=0,1,… ,𝜔  are not simultaneously 

approximable in the infinitesimal sense. 

 

That is, we will prove the necessary condition given by: 
 

 ( 𝜉0,  𝜉1 , … , 𝜉𝜔) ∈ 𝑆𝐴(≃ 0) ⇒ ∀𝑎, 𝑏 ∈ ℕ𝜎: [𝑎, 𝑏] ⊈ °( 𝜉0,  𝜉1 , … , 𝜉𝜔)   (𝒩) 
 

 

Proof. Since °( 𝜉0,  𝜉1 , … , 𝜉𝜔)  contains a standard interval [𝑎, 𝑏]  with 

𝑎 < 𝑏,  there exists a subsystem ( 𝜉𝑖0 ,  𝜉𝑖1  , … , 𝜉𝑖𝑘) ⊂ ( 𝜉0,  𝜉1 , … , 𝜉𝜔) such 

that 

{
°( 𝜉𝑖0 ,  𝜉𝑖1  , … , 𝜉𝑖𝑘) = [𝑎, 𝑏] 

 𝜉𝑖0 <  𝜉𝑖1 < … < 𝜉𝑖𝑘 ,
 

 

where 𝑘 ≃ +∞ . We prove that 𝑎 ≃ 𝜉𝑖0 ≃ 𝜉𝑖1 ≃ … ≃ 𝜉𝑖𝑘 ≃ b . In fact, 

suppose the contrary, i.e., there exists 𝑚 ∈ {1,2, . . . , 𝑘} such that 
 

𝜉𝑖𝑚−1 ≄ 𝜉𝑖𝑚 . 
 

Since °𝜉𝑖𝑚−1 ≠ °𝜉𝑖𝑚, it follows that 
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𝜉𝑖𝑚−1 + 𝜉𝑖𝑚

2
≃  
°𝜉𝑖𝑚−1 + °𝜉𝑖𝑚

2
∈ [𝑎, 𝑏]. 

 

Which is a contradiction because the number  
𝜉𝑖𝑚−1+𝜉𝑖𝑚

2
 does not belong to 

the system ( 𝜉𝑖0 ,  𝜉𝑖1  , … , 𝜉𝑖𝑘).  
 

Put 𝑑𝑠 =  𝜉𝑖𝑠+1 −  𝜉𝑖𝑠  for 𝑠 = 0, 1,… , 𝑘 − 1,  then max0≤𝑠≤𝑘−1(𝑑𝑠) ≃ 0.  Let  

𝛾 be an unlimited real number such that 

  
𝜆 = 𝛾 max

0≤𝑠≤𝑘−1
(𝑑𝑠) ≃ 0, 

 

and this by using Robinson’s Lemma. 
 

Now, we choose a system of 𝑁 elements  (𝜃𝑟) 𝑟=0,1,… ,𝑁  among the numbers 

(𝜉𝑖𝑠) 𝑠=0,1,… ,𝑘   as the following way 

 
𝜃0 = 𝜉𝑖0 ,  and 

 

𝜃𝑟 = 𝜉𝑖𝑚𝑟 is the nearest element strictly less than 𝜃0 + 𝑟 𝜆;  𝑟 = 1,2,… , 𝑁. 
 

where 𝑚𝑟 ∈ {0, 1, … , 𝑘} and 𝑁 is an unlimited integer, with 𝑁𝜆 ≃ 0. Then, 

we prove the conditions (a), (b) and (c) of the Lemma 2.4 for the new system 

( 𝜃0,  𝜃1 , … , 𝜃𝑁). In fact, from the construction of (𝜃𝑟) 𝑟=0,1,… ,𝑁  we see that 
 

 𝜃0 ≃  𝜃1 ≃ ⋯ ≃ 𝜃𝑁 ≃ 𝜉𝑖0 and  𝜃𝑟+1 −  𝜃𝑟 =  𝐷𝑟 > 0 ; 0 ≤ 𝑟 ≤ 𝑁 − 1.  

 

Thus, (a) and (b) are satisfied. For the proof of (c), we put 

 

 𝛿𝑟 = 𝜉𝑖0 + 𝑟 𝜆 −  𝜃𝑟 ;  𝑟 = 0,1, . . . , N. 

 

Then,  𝛿𝑟 ≤ 𝜉𝑖𝑚𝑟+1 − 𝜉𝑖𝑚𝑟 = 𝑑𝑖𝑚𝑟 , because 𝜉𝑖𝑚𝑟 is the nearest element strictly 

less than  𝜃0 + 𝑟 𝜆. Moreover, we have 
 

 𝛿𝑟
𝜆
=

 𝛿𝑟
𝛾 max
0≤𝑠≤𝑘−1

(𝑑𝑠)
≤
1

𝛾
(
 𝛿𝑟
𝑑𝑖𝑚𝑟

) ≤
1

𝛾
≃ 0. 

 

Therefore, for every 𝑟 = 0,1, . . . , N,  there exists an infinitesimal real number 

 𝜙𝑟 such that  𝛿𝑟 = 𝜆 𝜙𝑟. Hence 
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 𝜃𝑟+1 −  𝜃𝑟 = 𝜆 −  𝛿𝑟+1 +  𝛿𝑟 = 𝜆 − 𝜆 𝜙𝑟+1 + 𝜆 𝜙𝑟; for 𝑟 = 0, 1, … ,𝑁 − 1. 
 

It follows for every 𝑟 ∈ {1, 2, … ,𝑁 − 1} that 

 
 𝐷𝑟
 𝐷𝑟−1

=
 𝜃𝑟+1 −  𝜃𝑟
 𝜃𝑟 −  𝜃𝑟−1

=
1 −  𝜙𝑟+1 +  𝜙𝑟
1 −  𝜙𝑟 +  𝜙𝑟−1

≃ 1.  

Using Lemma 2.4 we can also conclude that ( 𝜃0,  𝜃1 , … , 𝜃𝑁) ∉ 𝑆𝐴(≃ 0) and 

therefore (𝜉0, 𝜉1, … , 𝜉𝜔) ∉  𝑆𝐴(≃ 0). This completes the proof of Theorem 

2.5.  □                                                                                                 

Corollary 2.6. The set  𝑆𝐴(≃ 0) does not contain countable systems. 

 

Proof. Let (𝜉0, 𝜉1, … , 𝜉𝜔 , . . . ) be a countable system of reals. There exists a 

subsystem ( 𝜉𝑖0 ,  𝜉𝑖1  , … , 𝜉𝑖𝑘) satisfying the conditions of Lemma 2.4, with 

𝑘 ≃ ∞. Hence ( 𝜉𝑖0 ,  𝜉𝑖1  , … , 𝜉𝑖𝑘) ∉  𝑆𝐴(≃ 0), and therefore 

(𝜉0, 𝜉1, … , 𝜉𝜔 , . . . ) ∉  𝑆𝐴(≃ 0).  □ 

 

In the following result, for a real number 𝑥 , let {𝑥}  and [𝑥]  denote the 

fractional part and the integer part of 𝑥, respectively.                            

 

Corollary 2.7. Let 𝜔  be an unlimited positive integer. If (𝜉0, 𝜉1, … , 𝜉𝜔) ∈
𝑆𝐴(≃ 0) then, for every limited integer 𝑐, °({𝑐𝜉0}, {𝑐𝜉1},… , {𝑐𝜉𝑘}) does not 

contain any standard interval [𝑎, 𝑏], with 𝑎 < 𝑏. 
 

 

Proof. Suppose that there exists a subset of positive integers: 
 

( 𝑖0,  𝑖1 , … , 𝑖𝑘) ⊂ (0,1, … ,𝜔), with 𝑘 ≃ +∞, 
 

and there is a limited integer 𝑐0  such that °({𝑐0𝜉𝑖0}, {𝑐0𝜉𝑖1}, … , {𝑐0𝜉𝑖𝑘}) =

[𝑎, 𝑏] where 𝑎 and 𝑏 are standard real numbers (𝑎 < 𝑏 ), and we prove that 
(𝜉0, 𝜉1, … , 𝜉𝜔) ∉  𝑆𝐴(≃ 0). In fact, from Theorem 2.5, we get 

 

({𝑐0𝜉𝑖0}, {𝑐0𝜉𝑖1},… , {𝑐0𝜉𝑖𝑘}) ∉  𝑆𝐴(≃ 0).        (9) 
 

 

It suffices to show that (𝑐0𝜉𝑖0 , 𝑐0𝜉𝑖1 , … , 𝑐0𝜉𝑖𝑘) ∉  𝑆𝐴(≃ 0).  Suppose the 

contrary. Then for every positive infinitesimal 휀 there exist rational numbers 

(
𝑃𝑖𝑠
𝑄
)
 𝑠=0,1,…,𝑘

 such that 
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{{𝑐0𝜉𝑖𝑠} =
𝑃𝑖𝑠 − [𝑐0𝜉𝑖𝑠]𝑄

𝑄
+ 휀£ 

휀𝑄 ≃ 0

 ;  0 ≤ 𝑠 ≤ 𝑘, 

 

because {𝑐0𝜉𝑖𝑠} = 𝑐0𝜉𝑖𝑠 − [𝑐0𝜉𝑖𝑠], for 𝑠 = 0,1, … , 𝑘. Thus, 
 

({𝑐0𝜉𝑖0}, {𝑐0𝜉𝑖1},… , {𝑐0𝜉𝑖𝑘}) ∈ 𝑆𝐴(≃ 0). 
 

 

Which contradicts the expression (9).  

 

Finally, since 𝑐0  is a limited integer, we have (𝜉𝑖0 , 𝜉𝑖1 , … , 𝜉𝑖𝑘) ∉  𝑆𝐴(≃ 0), 

and therefore (𝜉0, 𝜉1, … , 𝜉𝜔) ∉  𝑆𝐴(≃ 0).  This completes the proof.                                                                                                              

□ 

 

3. REMARKS AND EXAMPLES 

In this section, we give certain remarks and examples about the 

necessary condition stated in Theorem 2.5. 

 

Remark 3.1. The converse of  (𝒩) is false. 

 

In the following corollary, we give a system of real numbers 
( 𝜉0,  𝜉1 , … , 𝜉𝜔)  with 𝜔 ≃ +∞,  whose elements are not simultaneously 

approximable in the infinitesimal sense but its shadow is different from a 

standard interval [𝑎, 𝑏].  
 
Corollary 3.2 (Counterexample). Let 𝑓 be the exponential function. For 

every unlimited positive integer 𝜔, we have 
 

 (
1

𝑓(0)
,
1

𝑓(1)
, … ,

1

𝑓(𝜔)
) ∉  𝑆𝐴(≃ 0).        (10) 

 

Proof. Suppose that the reals of (10) are simultaneously approximable in the 

infinitesimal sense. Then, for 휀 =
1

𝑓(𝜔)
≃ 0,  there exist rational numbers 

(
𝑝𝑖

𝑞
) 𝑖=0,1,…,𝜔 such that 
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{

1

𝑓(𝑖)
=
𝑝𝑖
𝑞
+ 휀£𝑖 

휀𝑞 ≃ 0,

     

 

where  £𝑖 is a limited number for every 𝑖 = 0, 1, … ,𝜔.  
 

Using Cauchy’s principle, there exists an unlimited positive integer 𝑖0 such 

that 

 𝑓(𝑖0) <
𝛾

2
 ,         (11) 

 

where 𝛾 =
1

𝜀𝑞
≃ +∞. Since 𝑓 is increasing, we have 𝑖0 < 𝜔. In fact, if 𝑖0 ≥ 𝜔 

it follows that 𝑓(𝜔) <
𝑓(𝜔)

2𝑞
. Which is impossible. 

 

Now, we put 𝑠0 = 𝜔 − 𝑖0. From the hypothesis, there exist  
𝑝𝑠0
𝑞
,
𝑝𝜔

𝑞
 such that 

 
1

𝑓(𝑠0)
−

1

𝑓(𝜔)
= 휀(𝑓(𝑖0) − 1) =

𝑝𝑠0 − 𝑝𝜔

𝑞
+  휀£.        (12) 

 

Using (11) and (12), we get 

 

(𝑝𝑠0 − 𝑝𝜔 ) +  휀𝑞£ <
1

2
.        (13) 

 

It follows from (12) that 𝑝𝑠0 ≠ 𝑝𝜔  because 𝑓(𝑖0) ≃ +∞.  Moreover, if 

𝑝𝑠0 < 𝑝𝜔 then 

£ >
𝑝𝜔 − 𝑝𝑠0
휀𝑞

≃ +∞. 

 

which we may, because 
1

𝑓(𝑠0)
>

1

𝑓(𝜔)
.  A contradiction, since £ is a limited. 

Thus, 𝑝𝑠0 > 𝑝𝜔 . Finally, from (13) we have 1 ≤ 𝑝𝑠0 − 𝑝𝜔 <
2

3
, since 휀𝑞£ ≃

0. Which is impossible.  □                                                                     
 

Remark 3.3. Let 𝑓 be the function of Corollary 3.2, we put 

𝐴 = (
1

𝑓(0)
,
1

𝑓(1)
, … ,

1

𝑓(𝜔)
). Since 𝑓 is standard, then °𝐴 = 𝐴 is not an interval. 
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Corollary 3.4 (An example of Theorem 2.5). Let 𝜔 be an unlimited positive 

integer. Then, 

(
1

𝜔
,
2

𝜔
,… ,

𝜔 − 1

𝜔
,
𝜔

𝜔
) ∉  𝑆𝐴(≃ 0). 

 

Proof. It is clear that 

 

° (
1

𝜔
,
2

𝜔
,… ,

𝜔 − 1

𝜔
,
𝜔

𝜔
) = [0,1]. 

 

Thus we get the result by using Theorem 2.5. Moreover, for any standard 

interval [𝑎, 𝑏] , with 𝑎 < 𝑏, there exists a system of reals (𝜉0, 𝜉1, … , 𝜉𝜔) , 
with 𝜔 ≃ +∞  such that 𝑎 ≃ 𝜉

0
≃ 𝜉

1
≃ ⋯ ≃ 𝜉

𝜔
≃ b,  and also from 

Theorem 2.5, (𝜉0, 𝜉1, … , 𝜉𝜔) ∉  𝑆𝐴(≃ 0).  □ 

 

Remark 3.5. Let (𝜉0, 𝜉1, … , 𝜉𝑘) be an arbitrary system of real numbers. From 

the proof of Corollary 2.7, it is clear that (𝜉0, 𝜉1, … , 𝜉𝑘) ∈  𝑆𝐴(≃ 0), if and 

only if ({𝜉0}, {𝜉1}, … , {𝜉𝑘}) ∈  𝑆𝐴(≃ 0),  where {𝑥}  represent the fractional 

part of 𝑥. We can therefore deduce that if 

   
(𝜉0, 𝜉1, … , 𝜉𝑘) ∈  𝑆𝐴(≃ 0) 

 

then  
(𝜉0, 𝜉1, … , 𝜉𝑘 , {𝜉0}, {𝜉1}, … , {𝜉𝑘}) ∈  𝑆𝐴(≃ 0). 

   

4. CONCLUSION  

In this paper, we aim to give a necessary condition for a system of 

real numbers (𝜉0, 𝜉1, … , 𝜉𝜔)  to be in 𝑆𝐴(≃ 0),  where  𝜔 is an unlimited 

positive integer. However, a sufficient condition remains an open problem. 

 

ACKNOWLEDGEMENTS 

The first author would like to express his hearty thanks to the referee 

for his thorough scrutinizing the paper and for many useful comments which 

improved the earlier version completely, resulting in this improver version. 
 

 

 



Non-classical Study on the Simultaneous Rational Approximation 

 

 Malaysian Journal of Mathematical Sciences 225 

 

REFERENCES 

Cutland, N. (1983). Non standard measure theory and its applications. Bull. 

London Math. Soc. 15: 529-589. 

 

Diener, F. and Diener, M. (1995). Non standard Analysis in Practice, 1st Ed. 

Berlin: Springer. 

 

Diener, F. and Reeb, G. (1960). Analyse Non standard, Hermann, Paris. 

 

Hardy, G. H. and Wright, E. M. (1960). An Introduction to the Theory of 

Numbers. Oxford: Clarendon Press. 

 

Lutz, R. and Goze, M. (1981). Non standard Analysis: A Practical Guide 

with Applications. Lecture notes in Math. 881. New York: 

Springer-Verlag.  

 

Nelson, E. (1977). Internal set theory: A new approach to non standard 

analysis. Bull. Amer. Math.soc. 83. 1165-1198. 

 

Schmidt, W. M. (1962). Simultaneous approximation and algebraic 

independence of numbers. Bull. Amer. Math. Soc. 68: 475– 478. 

 

Schmidt, W.M. (1980). A Diophantine Approximation. Lecture notes in 

Mathematics. 785. Berlin: Springer-Verlag. 

 

Van den Berg, I. P. (1992). Extended use of IST. Annals of Pure and Applied 

Logic. 58: 73-92.  

 

 


